Connected and Automated Vehicles: How Do We Prepare?

Peter Sweatman
Principal, CAVita LLC

Giving life to transformational technology in transportation

Agenda

- A technological tipping point
 - Brought about by CAV
- Imposed on a century-old transportation system
 - The rate of change has changed
- The process of deployment
- The road(s) to "connected automation"
- Moving forward with public-private collaboration around CAV use cases

A technological tipping point

- Connected vehicles and infrastructure (CV)
- Automated vehicles (AV)
 - Including highly-automated vehicles (HAV's)
- Surrounded by:
 - Shared Use Services, Big Data, Smart Cities,
 Cybersecurity, Internet-of-Things
- Enabled by:
 - Sensors, software, cloud services, computation,
 robotics, artificial intelligence, consumer electronics

Century-old transportation system

- Drivers, vehicles and infrastructure
- Tremendous incremental progress
 - For example, crash rates continue to decline
- But not sustainable for another century
- New technologies cut right across the old silos
 - Safety, traffic efficiency, emissions, energy, economics
- The 21st Century mobility system is connected, automated and shared

Key transformational metrics

- Fatalities and injuries
- Delay in traffic
- Energy consumption
- Carbon emissions
- Customer satisfaction

Today's Transportation Challenges

Safety

- 32,675 highway deaths in 2014
- 6.1 million crashes in 2014
- Leading cause of death for ages 11, 16-24

Mobility

- 6.9 billion hours of travel delay
- \$160 billion cost of urban congestion

Environment

- 3.1 billion gallons of wasted fuel
- 56 billion lbs of additional CO₂

The rate of change has changed

- Conventional R&D model is linear: research, protoyping, testing, modification, deployment
- We now need rapid learning cycles based on large deployments
 - This has been the successful model of the auto industry
 - Commercially successful products require multiple cycles of deployment with increasingly large groups of users
- The same model applies to CAV; in addition it becomes a public-private activity, or set of activities
 - There is no rule book for "public-private learning cycles"
 - Current examples include pilots, demos, model deployments, field operational tests, challenges, etc

The process of deployment

- Model deployments (eg. Safety Pilot, Ann Arbor)
- Fake cities
 - Mcity
 - Willow Run (MI), RELLIS (Tx), GoMentum (CA)
- CV pilots
 - NYC, Tampa, Wyoming
- Advanced Transportation and Congestion Management Technologies Deployment Program (ATCMTD)
 - Marysville OH
- Public-private consortia
 - Safety Pilot, Mobility Transformation Center (MTC), American Center for Mobility, RELLIS (Tx), GoMentum, Virginia Automated Corridors, 170 Mountain Pilot
- Smart City Challenge
 - \$50M prize
 - One winner out of 78 cities: <u>Columbus</u>

Mcity: opened by U-M and MDOT July 20, 2015

Streetscape in Downtown **Mcity**

RELLIS Campus at Texas A&M

CV and AV can proceed independently on parallel paths but will converge to produce "connected automation"

Path to CV

Connected Vehicles

- Voluntary fitment of V2V and I2V by OEMs
- Aftermarket fitment
- Introduction of V2V rule
 - NPRM released December 2016
- Significant penetration by 2025

Connected Infrastructure

- V2I guidance from FHWA
 - Anticipated December 2016
- V2X pilots (NYC, Tampa, Wyoming)
- AASHTO SPAT challenge
- Actions by State DOT's,
 MPOs and cities
- Significant penetration of signalized intersections by 2025

Continuing issues for CV

- Exclusive access to 5.9 GHz spectrum
 - FCC will decide whether to allow multiple uses and to auction part or all of the spectrum (currently reserved for safety applications)
- Cybersecurity & privacy
 - Authority for issuing security certificates
 - Monitoring of security breaches
 - The auto industry has created an Auto ISAC (Information Sharing and Analysis Center) under the Alliance of Automotive Manufacturers

Connected Vehicles

Roadside Equipment (RSEs)

Path to AV

Automated Vehicles

- Voluntary fitment of automated features by OEMs
- Fitment of automated features under NHTSA agreements
- Significant penetration by 2025

Driverless Vehicles

- Rules of the road at state level
- NHTSA issuing AV interpretations of FMVSS
- USDOT field operational tests (FOTs) – to be announced
- Low-speed trials
- Smart cities deployments
- On-demand fleets in precincts and cities
- NHTSA guidance on highlyautomated vehicles (HAV's)
- Readiness for on-demand mobility services by 2025

Continuing issues for AV

- Occasional engagement of human driver
- Liability
- Cybersecurity & privacy
- Compliance with federal motor vehicle standards
- No national roadmap to HAV deployment
- Too many questions, inhibiting collaboration
- Shared mobility accelerates deployment, but brings more questions

Technology and Policy Driving Mobility

TRB Partners in Research Symposium: Transformational Technologies

Detroit, Michigan – October 31 – November 1, 2016

Convergence of CV and AV paths

Driver Assistive Truck Platooning

North American Council for Freight Efficiency (2013). *CR England Peloton Technology platooning test Nov 2013.*

The tipping point for CAV 2025 – 2030 timeframe

- V2V and V2I are widely deployed
 - Cybersecurity and privacy issues are settled
- Privately-owned vehicles with automated features (such as AEB) are widely used
 - Many of these vehicles have the additional benefit of V2V and V2I connectivity
- Driverless vehicle standards and operating rules are available
 - Cybersecurity & privacy measures are proven adequate for AVs on a large scale
 - Experience with mobility services using tailored driverless vehicles
 - Sufficient connected infrastructure is available

CAV scenarios and roadmap for private and public action

Towards Road Transport Automation: Opportunities in Public—Private Collaboration Third EU—U.S. Transportation Research Symposium

April 14-15, 2015
National Academy of Science Building
Washington, D.C.

Peter Sweatman, U-M/CAVita & Maxime Flament, ERTICO

By the numbers

- 245 research questions
- 50 experts
- 11 constituencies
- 8 key topics
- 3 use cases

use cases enable us to get our arms around an almost overwhelming set of issues

EU-US use case scenarios

Use Case 1

Freeway Platooning: Moderately Automated Highway Operation

Source: USDOT

Use Case 2

Automated City Center: Highly Automated Urban Operation

Source: NORDICAPIS.COM

Use Case 3

Urban Chauffeur: Fully Automated Tailored Mobility Service

Source: http://www.citymobil2.eu/en/Downloads/Pictures/

Use cases considered by Volpe/NHTSA

Review of Federal Motor Vehicle Safety Standards (FMVSS) for Automated Vehicles

Automated Vehicles

- Highway automation
- Driverless valet
- Truck platooning
- Aftermarket highly-automated driverless vehicle kit
- Conventional vehicle with highlyautomated OEM kit
- Highly-automated, conventionally designed vehicle

Driverless Vehicles

- Highly-automated vehicle with advanced design
- Highly-automated vehicle with novel design
- Riderless delivery motorcycle
- Driverless delivery vehicle (light duty/heavy duty)

CAV partners and activities

- AASHTO, ITE & ITS-A
 - V2I Deployment Coalition (V2I-DC)
 - Chair: Shailen Bhatt
- NHTSA, FHWA & CAMP
 - Many technical, standards, regulatory and advisory activities
- USDOT & AASHTO
 - V2I Footprint Analysis
- AASHTO CAV Executive Leadership Team
 - Chair: Kirk Steudle
 - Policy positioning for AV
- TRB/NCHRP CAV research roadmap
 - November 2016 symposium on transformational technologies (Detroit)
 - Anticipated formation of TRB research roundtables

Policy issues for public-private collaboration

- Nationally-applicable guidelines for the introduction of AV – based on use cases
- Solutions to early-stage risks
 - Spectrum, security & privacy
- Interoperability of CV and AV across state borders
- Playing field for information exchange between industry and government
- Data streams and data access provisions
- Comprehensive public outreach program for CAV
- Common set of planning assumptions, scenarios and tools